乌鸦悖论是什么意思:乌鸦悖论怎么回事应用实例分享
乌鸦悖论是关于证据本质的悖论,悖论来自于两句话,有句话说:所有乌鸦都是黑色的。还有与之逻辑相对的一句话:所有不黑的东西都不是乌鸦。乌鸦悖论,也叫做亨佩尔的乌鸦或亨佩尔悖论,是二十世纪四十年代德国逻辑学家卡尔·古斯塔夫·亨佩尔为了说明归纳法违反直觉而提出的一个悖论。亨佩尔给出了归纳法原理的一个例子:“所有乌鸦都是黑色的”论断。我们可以出去观察成千上万只乌鸦,然后发现他们都是黑的。
乌鸦悖论是怎么一回事
几千年以来,无数人观察了许多事物,比如地心引力法则,人们趋于相信其极可能是真理。这种类型的推理可以总结成“归纳法原理”:如果实例X被观察到和论断T相符合,那么论断T正确的概率增加。
亨佩尔给出了归纳法原理的一个例子:“所有乌鸦都是黑色的”论断。我们可以出去观察成千上万只乌鸦,然后发现他们都是黑的。在每一次观察之后,我们对“所有乌鸦都是黑的”的信任度会逐渐提高。归纳法原理在这里看起来合理的。
现在问题出现了。“所有乌鸦都是黑的” 的论断在逻辑上和“所有不是黑的东西不是乌鸦”等价。如果我们观察到一只红苹果,它不是黑的,也不是乌鸦,那么这次观察必会增加我们对“所有不是黑的东西不是乌鸦”的信任度,因此更加确信“所有的乌鸦都是黑的”!
其他一些哲学家质疑“等价原理”。也许红苹果能够增加我们对论断“所有不是黑的东西不是乌鸦”的信任度,而不增加我们对 “所有乌鸦都是黑色的”信任。这个提议受到质疑,因为你不能对等价的两个命题有不同的信任度,如果你知道他们都是真的或都是假的。
这样一来,虽然“所有乌鸦都是黑的”和“所有不是黑的东西都不是乌鸦”这两个命题所拥有的信任度必须相等,但只有“黑色的乌鸦”才能同时增加两者的信任度,而“非黑色的非乌鸦”并不增加任何一个命题的信任度。
这个问题被总结成:
★我从未见过紫色的牛,I never saw a purple cow
★但若我见到一头,But if I were to see one
★乌鸦皆黑的概率,Would the probability ravens are black
★更加可能是一么?Have a better chance to be one?
乌鸦悖论应用实例
解决它和直觉的冲突,哲学家们提出了一些方法。美国逻辑学家纳尔逊·古德曼(Nelson Goodman)建议对我们的推理添加一些限制,比如永远不要考虑支持论断“所有P满足Q”且同时也支持“没有P满足非Q” 的实例。
其他一些哲学家质疑“等价原理”。也许红苹果能够增加我们对论断“所有不是黑的东西不是乌鸦”的信任度,而不增加我们对 “所有乌鸦都是黑色的”信任。这个提议受到质疑,因为你不能对等价的两个命题有不同的信任度,如果你知道他们都是真的或都是假的。
如果有人随机选一个苹果,那么他看到一个红苹果的几率和「乌鸦」的颜色是完全没有关系的。这时分子等于分母,所以分数等于1,所以以上讨论的几率不会改变。所以看见一只红色的苹果不会增加人们对「乌鸦都是黑色的」的信任度。
而如果那人是随叫随到选择一个非黑的物件,那个物件正好是一个红的苹果,那么我们对得到一个分子大于分母的,几乎等于一的假分数。所以在这个情况下,看见一只红苹果确实会极微小地增加我们对「乌鸦都是黑色的」的信任度。
其实,随着一个人看到的不是黑色的东西的增加(并发现其中没有乌鸦),「乌鸦都是黑色的」的几率会趋向于1。
综上所述,无论是“乌鸦悖论”的一例一例寻求例证,或者是逻辑经验主义的强意义的正式还是弱意义的或然证实,它的主要目的都是寻找世界的确定性。